PMT

Mark Scheme (Results) Summer 2010

GCE

GCE Statistics S2 (6684/01)

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 0844 576 0025, our GCSE team on 0844 576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link:

http://www.edexcel.com/Aboutus/contact-us/

Summer 2010 Publications Code UA024768 All the material in this publication is copyright © Edexcel Ltd 2010

June 2010 Statistics S2 6684 Mark Scheme

Question Number		Scheme	Ма	irks
Q1	(a)	A population is collection of all items	B1	(1)
	(b)	(A random variable) that is a function of the sample which contains no unknown quantities/parameters.	B1	(1)
	(c)	The voters in the town	B1	
		Percentage/proportion voting for Dr Smith	B1	(2)
	(d)	Probability Distribution of those voting for Dr Smith from all possible samples (of size 100)	B1	(2)
				(1)
				[5]
		Notes		
	(a)	B1 – collection/group all items – need to have /imply all eg entire/complete/every		
	(b)	B1 – needs <u>function/calculation(o.e.) of the sample/random variables/observations</u> and <u>unknown quantities/parameters(o.e.)</u> NB do not allow unknown variables e.g. "A calculation based <u>solely</u> on observations from a given sample." B1 Solely/o "A calculation based <u>only</u> on known data from a sample" B1 unknown	l <u>no</u> nly imp n quant	oly no ities
	(c)	B1 - Voters		
		Do not allow 100 voters.		
		 B1 – percentage/ proportion voting (for Dr Smith) the number of people voting (for Dr Smith) Allow 35% of people voting (for Dr Smith) Allow 35 people voting (for Dr Smith) Do not allow 35% or 35 alone 		
	(d)	 B1 – answers must include all three of these features (i) All possible samples, (ii) their associated probabilities, (iii) context of voting for Dr Smith. 		
		e.g "It is all possible values of the percentage and their associated probabilities." B0 no	contex	ĸt

Question Number	Scheme	Ma	ŕks
Q2 (a)	Let <i>X</i> be the random variable the number of games Bhim loses. $X \sim B(9, 0.2)$	B1	
	$P(X \le 3) - P(X \le 2) = 0.9144 - 0.7382 \text{or} (0.2)^3 (0.8)^6 \frac{9!}{3!6!}$ = 0.1762 = -0.1762 = avert 0.1762	M1 Δ1	(3)
(1)			(0)
(b)	$P(X \le 4) = 0.9804$ awrt 0.98	MIAI	(2)
(c)	Mean = 3 variance = 2.85, $\frac{57}{20}$	B1 B1	(2)
(d)	Po(3) poisson	M1	
	$P(X > 4) = 1 - P(X \le 4)$	M1	
	= 1 - 0.8153		
	= 0.1847	A1	(3) [10]
	Notes		
(a)	B1 – writing or use of $B(9, 0.2)$		
	M1 for writing/using $P(X \le 3) - P(X \le 2)$ or $(p)^3 (1-p)^6 \frac{9!}{2!6!}$		
	A1 awrt 0.176		
(b)	M1 for writing or using $P(X \le 4)$ A1 awrt 0.98		
(c)	B1 3 B1 2.85, or exact equivalent		
(d)	M1 for using Poisson M1 for writing or using $1 - P(X \le 4)$ NB P ($X \le 4$) is 0.7254 Po(3.5) and 0.8912 Po(2. A1 awrt 0.185	5)	
	Special case :Use of Po(1.8) in (a) and (b)		
	(a) can get B1 M1 A0 – B1 if written B(9, 0.2), M1 for $\frac{e^{-1.8}1.8^3}{3!}$ or awrt to 0.161		
	If $B(9, 0.2)$ is not seen then the only mark available for using Poisson is M1.		
	(b) can get M1 A0 - M1 for writing or using $P(X \le 4)$ or may be implied by awrt 0.964		
	Use of Normal in (d) Can get M0 M1 A0 for M1 they must write 1 $P(X < 4)$ or get switt 0.197		
	$1 \subset an get two with A0 101 with they must write 1 - 1 (A \leq 4) of get awith 0.107$		

Question Number	Scheme			Marks
Q3	Method 1	Method 2	Method 3	
	$P(X > 6) = \frac{1}{6}$	$P(4 < X < 6) = \frac{1}{3}$	$P(X > 6) = \frac{1}{6}$	B1 M1
	$P(X < 4) = \frac{1}{2}$		$Y \sim U[3,9] P(Y > 6) = \frac{1}{2}$	A1
	$total = \frac{1}{6} + \frac{1}{2} = \frac{2}{3}$	$1 - \frac{1}{3} = \frac{2}{3}$	$total = \frac{1}{6} + \frac{1}{2} = \frac{2}{3}$	M1dep B A1 (5)
				[5]
	Notes Methods 1 and 2 B1 for 6 and 4 (allow if seen on a diagram on <i>x</i> -axis) M1 for P($X > 6$) or P($6 < X < 7$); or P($X < 4$) or P($1 < X < 4$); or P($4 < X < 6$) Allow $\leq and \geq$ signs A1 $\frac{1}{6}$; $or \frac{1}{2}$; $\frac{1}{3}$ must match the probability statement M1 for adding their "P($X > 6$)" and their "P($X < 4$)" or 1 - their "P($4 < X < 6$)" dep on getting first B mark A1 cao $\frac{2}{3}$ Method 3 Y -U[3, 9] B1 for 6 with U[1,7]and 6 with U[3,9] M1 for P($X > 6$) or P($6 < X < 7$) or P($6 < Y < 9$) A1 $\frac{1}{6}$; $or \frac{1}{2}$; must match the probability statement M1 for adding their "P($X > 6$)" and their "P($Y > 6$)" dep on getting first B mark A1 cao $\frac{2}{3}$			

Question Number		Scheme	Marl	ks
Q4	(a)	$\frac{4}{9}(m^2 + 2m - 3) = 0.5$	M1	
		$m^2 + 2m - 4.125 = 0$ $2 + \sqrt{4 + 16.5}$		
		$m = \frac{-2 \pm \sqrt{4 + 10.5}}{2}$	M1	
		m = 1.26, -3.264 (median =) 1.26	A1	(3)
	(b)	Differentiating $\frac{d\left(\frac{4}{9}\left(x^2+2x-3\right)\right)}{dx} = \frac{4}{9}\left(2x+2\right)$	M1 A1	
		$f(x) = \begin{cases} \frac{8}{9}(x+1) & 1 \le x \le 1.5 \\ 0 & \text{otherwise} \end{cases}$	B1ft	(3)
	(c)	$P(X \ge 1.2) = 1 - F(1.2)$ - 1 - 0.3733	M1	
		$=\frac{47}{75}, \ 0.6267$ awrt 0.627	A1	(2)
	(d)	$(0.6267)^4 = 0.154$ awrt 0.154 or 0.155	M1 A1	(2)
				[10]
		Notes		
	(a)	M1 putting $F(x) = 0.5$ M1 using correct quadratic formula. If use calc need to get 1.26 (384) A1 cao 1.26 must reject the other root.		1-
	(b)	M1 attempt to differentiate. At least one $x^n \rightarrow x^{n-1}$		lark.
	(c)	B1 must have both parts- follow through their $F'(x)$ Condone <		
	(-)	M1 finding/writing 1 – F(1.2) may use/write $\int_{1.2}^{1.5} \frac{1}{9} (x+1) dx$ or 1 – $\int_{1}^{1.5} \frac{1}{9} (x+1) dx$		
		or $\int_{1.2}^{1.2}$ "their f(x)" dx. Condone missing dx		
	(d)	A1 awrt 0.627 M1 $(c)^4$ If expressions are not given you need to check the calculation is correct to 2sf	ĺ	
	(9)	A1 awrt 0.154 or 0.155		

Ques Num	stion nber	Scheme	Marks	
Q5	(a)	Connecting occurs at random/independently, singly or at a constant rate		
	(b)	Po (8)	B1	
	(i)	P(X = 0) = 0.0003	M1A1	
	(ii)	P(X > 4) = 1 - P(X < 3)	M1	
	. ,	= 1 - 0.0424	A1 (5)	
		= 0.9576		
	(c)	$H_0: \lambda = 4 \ (48) \ H_1: \lambda > 4 \ (48)$	B1	
		N(48,48)	M1 A1	
		Method 1 Method 2		
		$P(X \ge 59.5) = P\left(Z \ge \frac{59.5 - 48}{\sqrt{48}}\right) \qquad \left(\frac{x - 0.5 - 48}{\sqrt{48}} = 1.6449\right)$	M1 M1 A1	
		= P(Z > 1.66)		
		= 1 - 0.9515		
		= 0.0485 $x = 59.9$	A1	
		0.0485 < 0.05	N/1	
		Reject H_0 . Significant, 60 lies in the Critical region The number of foiled connections at the first attempt has increased	$\Delta 1 \text{ ft}$ (9)	
		The number of raned connections at the first attempt has increased.	[15]	
		Notes		
	(a)	B1 Any one of randomly/independently/singly/constant rate. Must have context of	I	
	. ,	connection/logging on/fail		
	(b)	B1 Writing or using Po(8) in (i) or (ii)		
	(i)	M1 for writing or finding $P(X = 0)$		
	(::)	A1 awrt 0.0003		
	(11)	M1 for writing or finding $1 - P(X \le 3)$		
	(c)	AI dWIL 0.958 B1 both hypotheses correct Must use λ or μ		
	(0)	M1 identifying normal		
		A1 using or seeing mean and variance of 48		
		These first two marks may be given if the following are seen in the standardisation		
		formula : 48 and $\sqrt{48}$ or awrt 6.93		
		M1 for attempting a continuity correction (Method 1: 60 ± 0.5 / Method 2: $x \pm 0.5$)		
		M1 for standardising using their mean and their standard deviation and using either		
		Method 1 [59.5, 60 or 60.5. accept \pm z.] Method 2 [($x\pm$ 0.5) and equal to a \pm z value)		
		A1 correct z value awrt ± 1.66 or $\pm \frac{59.5 - 48}{\sqrt{48}}$, or $\frac{x - 0.5 - 48}{\sqrt{48}} = 1.6449$		
		A1 awrt 3 sig fig in range $0.0484 = 0.0485$ awrt 59.9		
		M1 for "reject H_{0} " or "significant" maybe implied by "correct contextual comment"		
		If one tail hypotheses given follow through "their prob" and 0.05, $p < 0.5$		
		If two tail hypotheses given follow through "their prob" with 0.025, $p < 0.5$		
		If one tail hypotheses given follow through "their prob" and 0.95, $p > 0.5$		
		If two tail hypotheses given follow through "their prob" with 0.975, $p > 0.5$		
	If no H_1 given they get M0 A1 ft correct contextual statement followed through from their prob and H_1 need the w <u>number of failed connections/log ons has increased</u> o.e. Allow "there are more failed connections"			
		NB A correct contextual statement alone followed through from their prob and H	1 gets M1 A1	

PMT

Question Number		Scheme	Mar	ks
Q6	(a)	2 outcomes/faulty or not faulty/success or fail A constant probability Independence	B1 B1	(2)
	(b)	Fixed number of trials (fixed n) $X \sim B(50, 0.25)$	M1	(2)
		$P(X \le 6) = 0.0194$ $P(X \le 7) = 0.0453$ $P(X \ge 18) = 0.0551$ $P(X \ge 19) = 0.0287$		
		CR $X \le 6$ and $X \ge 19$	A1 A1	(3)
	(c)	0.0194 + 0.0287 = 0.0481	M1A1	(2)
	(d)	8(It) is not in the Critical region or $8(It)$ is not significant or $0.0916 > 0.025$; There is evidence that the probability of a faulty bolt is 0.25 or the company's claim is correct.	M1; A1ft	(2)
	(e)	H ₀ : $p = 0.25$ H ₁ : $p < 0.25$ P($X \le 5$) = 0.0070 or CR $X \le 5$ 0.007 < 0.01.	B1B1 M1A1	
		5 is in the critical region, reject H_0 , significant. There is evidence that the probability of faulty bolts has decreased	M1 A1ft	6) [15]
	(a)	Notes B1 B1 one mark for each of any of the four statements. Give first B1 if only one correc	t statem	ent
	(b)	M1 for writing or using B(50,0.25) also may be implied by both CR being correct. Con P in critical region for the method mark. A1 (X) ≤ 6 o.e. [0,6] DO NOT accept P(X ≤ 6) A1 (X) ≥ 10 e.g. [10,50] DO NOT accept P(X ≥ 10)	done us	e of
	(c)	M1 Adding two probabilities for two tails. Both probabilities must be less than 0.5 A1 awrt 0.0481		
	(d)	M1 one of the given statements followed through from their CR. A1 contextual comment followed through from their CR.	. 1	
	(e)	NB A correct contextual comment <u>alone</u> followed through from their CR. will get M1 A B1 for H ₀ must use p or π (pi) B1 for H ₁ must use p or π (pi) M1 for finding or writing P($X \le 5$) or attempting to find a critical region or a correct c. A1 awrt 0.007/CR X < 5	ritical re	gion
		 M1 correct statement using their Probability and 0.01 if one tail test or a correct statement using their Probability and 0.005 if two tail test. The 0.01 or 0.005 needn't be explicitly seen but implied by correct statement compatible with their the distribution. 		
		A1 correct contextual statement follow through from their prob and H_1 . Need faulty bolts and decreased.		
		NB A correct contextual statement alone followed through from their prob and H ₁ get M1 A1		

Question Number	Scheme	Mar	ks
Q7 (ai)	$f(y) \ge 0 \text{ or } f(3) \ge 0$ ky(a - y) > 0 or 3k(a - 3) > 0 or (a - y) > 0 or (a - 3) > 0		
	$a \ge 3$	A1 cso	
(11)			
(11)	$\int_{0}^{3} k(ay - y^{2})dy = 1$ integration	M1	
	$\left[k\left(\frac{ay^2}{2} - \frac{y^3}{3}\right)\right]_0^3 = 1$ answer correct	A1	
	$k\left(\frac{9a}{2}-9\right)=1$ answer = 1	M1	
	$k\left[\frac{9a-18}{2}\right] = 1$		
	$k = \frac{2}{9(a-2)} *$	A1 cso	6)
(b)	$\int_{0}^{3} k(ay^{2} - y^{3}) dy = 1.75$ Int $\int xf(x)$	M1	
	$\begin{bmatrix} (av^3 - v^4) \end{bmatrix}^3$ Correct integration	A1	
	$\left\lfloor k \left(\frac{dy}{3} - \frac{y}{4} \right) \right\rfloor_{0} = 1.75 \text{f}(x) = 1.75 \text{ and limits } 0.3$	M1dep	
	$k\left(9a - \frac{81}{4}\right) = 1.75$		
	$2\left(9a - \frac{81}{4}\right) = 15.75(a - 2)$ subst k	M1dep	
	$2.25a = -31.5 + \frac{81}{2}$		
	a = 4 *	A1cso	
	$k = \frac{1}{\Omega}$	B1	(6)
	2		

PMT

PMT

Further copies of this publication are available from Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623 467467 Fax 01623 450481

Email publications@linneydirect.com

Order Code UA024768 Summer 2010

For more information on Edexcel qualifications, please visit <u>www.edexcel.com/quals</u>

Edexcel Limited. Registered in England and Wales no.4496750 Registered Office: One90 High Holborn, London, WC1V 7BH